中色行业在线培训平台

全国咨询热线:4006037900

工艺

您当前的位置:首页 > 工艺 > 教材

金属材料的晶粒细化方法(3)
2018-10-09 14:47:36 点击率:3653 来源:

 12.jpg

碳、氮化物在铁素体中的溶解度

13.jpg


碳、氮化物在奥氏体中的溶解度

控制轧制细化铁素体晶粒

在低碳钢的超细化处理工艺中,具有代表性和比较成熟的工艺是热机械处理(TMCP)——控制轧制和控制冷却。

14.jpg


控制轧制和快速冷却的四个阶段及各阶段的结晶组织

对应于上述铁素体晶粒细化的四种方法,在控轧控冷工艺中,基本上可分为四个阶段:(1)动态再结晶的热轧以获得初始γ晶粒的细化;(2)再结晶控制轧制使γ晶粒进一步细化;(3)非再结晶控轧以累积变形量,加大α形核面积,驱动γα相变,最终达到细化晶粒α的目标值;(4)形变热处理。(1)、(2)和(3)可导致钢的晶粒细化和超细化。而形变热处理是广义TMCP中的一种,可代替普通再加热处理,是一种节能且优化性能的不可逆热处理方式。


形变热处理大致可分为两类:高温形变热处理是将钢在较低的奥氏体化温度进行变形,然后淬火;低温形变热处理是将淬火后的钢进行冷变形,然后奥氏体化再淬火。高温形变热处理工艺是将钢加热到稍高于Ac3温度,保持一段时间,达到完全奥氏体化,然后以较大的压下量使奥氏体发生强烈变形,之后保温一段时间,使奥氏体进行起始再结晶,并于晶粒尚未开始长大之前淬火,从而获得较细小的淬火组织。低温形变热处理工艺,是将淬火以后的钢加热到相变点以下的低温进行大压下量的变形,然后加热到Ac3以上温度短时保温,奥氏体化后迅速淬火。

形变热处理的目的与方法

42.jpg


热轧工艺对钢的性能和质量具有重要影响,如钢坯的加热温度和开轧温度、轧制道次和压下量,终轧温度和轧后冷却制度等都是很重要的影响因素。自从最初发现降低终轧温度能够细化晶粒从而提高钢的强度和韧性之后,人们逐渐认识到轧制工艺各个环节的重要性,从而形成了所谓的控制轧制。

控制轧制与普通热轧不同,其主要区别在于它打破了热轧只要求钢材成型的传统观念,不仅通过热加工能使钢材得到所规定的形状和尺寸,而且通过金属的高度形变充分细化钢材的晶粒和改善其组织,发挥与热处理相似的作用。经过30多年的不断发展,控制轧制已趋于成熟,得到广泛应用。特别是加入微合金化元素的低合金高强度钢,成为改善钢材质量和提高使用性能的最有效方法之一。

控制轧制的典型工艺,可分为两阶段轧制和三阶段轧制。其中,两阶段控轧的终轧温度在Ar3以上,为形变未再结晶奥氏体向铁素体的转变,即形变诱导铁素体相变。三阶段控轧,终轧在(γ+α)两相区,其基本原理是先在再结晶区通过多次反复的高温变形再结晶,并借助微合金化元素铌、钒、钛及其析出物对再结晶的抑制作用,使奥氏体晶粒充分细化,然后再在γ/α。相变前的奥氏体未再结晶区,使细化了的奥氏体进行多道次的变形积累,给铁素体在γ/α。相变时的大量形核提供有利条件,以便获得微细的铁素体晶粒,最后在(γ+α)两相区终轧。其目的是:一方面通过变形在铁素体中引入大量位错及其亚结构和织构,借此挖掘位错亚结构和织构的强化效应,提高材料强度;另一方面,通过(γ+α)两相区终轧,既有利于微合金化元素在铁素体中的析出,又能在尚未相变的奥氏体晶粒中继续引入大量形变带,给铁素体晶粒的均匀形核和充分细化创造更有利的条件,从而进一步发挥出晶粒细化和微合金化元素析出相的沉淀强化作用。因此,经过(γ+α)两相区控轧的钢材具有晶粒细化、沉淀强化、位错与亚结构强化、固溶强化和织构强化等多种强化效应,可使钢材的强度得到大幅度的提高。同时利用晶粒细化和织构的韧化效应达到提高钢材韧性的目的。

从以上所述的控轧原理中可以看出,控制轧制利用较多的是奥氏体的回复与再结晶细化奥氏体晶粒,从而细化铁素体组织,以及增加位错密度借以增大形核场密度来细化铁素体晶粒。利用再结晶形核、长大现象进行晶粒细化时,临界晶核尺寸大小成为晶粒细化极限的目标。临界晶核的尺寸是形核驱动力的函数,驱动力越大,临界晶核尺寸越小。通常,相变时的驱动力比再结晶时大得多,相变时临界晶核尺寸能到0.1μm以下,而再结晶时的晶粒尺寸通常为1μm左右。从本质上讲,相变比再结晶细化晶粒的能力大得多,因此将相变作为形变热处理的主要形核机制将会更有效地细化铁素体晶粒。


形变诱导铁素体相变细化铁素体晶粒

形变诱导相变(Deformation Induced Ferrite Transformation)是将低碳钢加热到奥氏体相变温度Ac3以上,保温一段时间,使其奥氏体化,然后以一定速度冷却到Ar3和Ae3之间,进行大压下量变形,从而获得超细铁素体晶粒。在变形过程中,形变能的积聚使Ar3点温度上升,在变形的同时发生铁素体相变,并且变形后进行快速冷却,以保持在变形过程中形成的超细铁素体晶粒。在形变诱导相变细化晶粒中,形变量和形变温度是两个最为重要的参数,随着形变量的增加和形变温度的降低,形变诱导铁素体相变的转变量增加,同时铁素体晶粒变细。

形变诱导相变现象的发现是研究提高传统材料性能的重要突破,它的出现为大幅度提高传统金属材料的性能提供了新手段。与传统形变热处理工艺相比,形变诱导相变工艺强调将形变温度控制在Ar3附近,从而使γα。相变的起始温度高于平衡相变温度。研究表明,在Ar3附近进行低温大变形,通过形变诱导铁素体相变和铁素体的动态再结晶两种机制,可以获得超细的铁素体晶粒。

形变诱导相变细化晶粒主要应用于钢铁材料的控轧控冷生产过程中。

循环加热淬火细化奥氏体晶粒

采用多次循环加热淬火冷却方法可有效细化材料的组织。其具体工艺是将钢由室温加热至稍高于Ac3的温度,在较低的奥氏体化温度下短时保温,然后快速淬火冷却至室温,再重复此过程。每循环一次奥氏体晶粒就获得一定程度的细化,从而获得细小的奥氏体晶粒组织。一般循环3~4次细化效果最佳,循环6~7次细化程度达到最大。

该工艺的关键在于升温速率和冷却速率,基本要求就是加热和冷却速率都要快,当不能实现急冷和急热时则不能明显细化晶粒。利用特殊的快速加热方法如火焰加热、感应加热、电接触加热,可实现对材料的快速循环加热淬火,可得到明显的细化效果,且超细化效果的稳定性要远高于盐炉循环加热。

球磨细化晶粒

球磨法是指将大块物料放入高能球磨机中,利用介质和物料之间相互研磨和冲击使物料细化,其产物一般为粉料,形状不规则,表面也可能与介质发生化学反应而受污染。粒子因受到多次变形、硬化和断裂,会有大量缺陷存在,因而表面缺陷多且活性极高。高能磨球法工艺简单,操作成分可连续调节,能够制备出常规方法难以获得的高熔点纳米金属材料,但也存在一些问题,如晶粒尺寸不均匀,球磨及氧化等带来污染等。

非晶晶化细化晶粒

非晶晶化法通过控制非晶态固体的晶化动力学过程使晶化产物为纳米尺寸的晶粒。非晶晶化法通常由非晶态固体的获得和晶化两个过程组成:非晶态固体可通过熔体激冷、高速直流溅射、等离了流雾化、固态反应法等技术制备,最常用的是单辊或双辊旋淬法,由于以上方法只能获得非晶粉末、丝及条带等低维材料,因而还需采用热模压实、热挤压或高温高压烧结等方法合成块状样品;晶化通常采用等温退火方法,近年来还发展了分级退火、脉冲退火、激波诱导等方法。

15.jpg


非晶合金不同退火温度对晶粒尺寸的影响

目前,利用该法已制备出Ni, Fe, Co, Pd基等多种合金系列的纳米晶体,也可制备出金属间化合物和单质半导体纳米晶体,并已发展到实用阶段,在纳米软磁材料的制备方面应用最为广泛。非晶晶化法的特点是成本低,产量大,界面清洁致密,样品中无微孔隙,晶粒度变化易控制,并有助于研究纳米晶的形成机理及用来检验经典的形核长大理论在快速凝固条件下应用的可能性;其局限性在于依赖于非晶态固体的获得,只适用于非晶形成能力较强的合金系。


专业 专注 省心 放心
  • 改善意见service@icnpt.com
  • 传真号0379-64872480
  • 客服电话4006037900
  • 工作时间8:00-18:00