中色行业在线培训平台

全国咨询热线:4006037900

工艺

您当前的位置:首页 > 工艺 > 教材

金属材料的晶粒细化方法(6)
2018-10-10 15:15:02 点击率:1816 来源:

  细化剂的影响

细化剂处理法是在镁合金熔化后将具有细化作用的熔剂添加到合金熔体中,通过熔剂和合金体反应获得细小晶粒的一种晶粒细化工艺。镁合金不存在通用可靠的晶粒细化剂,各种不同的晶粒细化方法的使用范围取决于合金系甚至于特定成分的合金。其主要包括不含Al的镁合金和含Al的镁合金细化剂处理法。不含Al的镁合金主要利用含Zr的中间合金细化;含Al的镁合金晶粒细化剂研究较多的是碳质孕育剂和细化效果较好的高熔点化合物。

不含铝的镁合金主要是利用Zr中间合金细化晶粒。Mg-Al系合金不能用Zr作为细化剂。由于Zr易与合金中的Al形成稳定的化合物Al3Zr沉淀出来,其晶格常数(a=4.135 nm,c=16.93 nm)与Mg(a=0.320nm,c=0.520nm)相差甚大,作为异质形核核心的可能性小。同时,形成的Al3Zr将造成合金中Al和Zr的损失,导致晶粒粗化。目前锆的加入主要以锆盐(如ZrCl4K2ZrCl6、K2ZrF6)和Mg-Zr中间合金为主,但锆盐中杂质元素的带入会恶化合金的力学性能及抗腐蚀性能,因此,以Mg-Zr中间合金加入是目前最为主要的方法。

碳质孕育法是Mg-Al系合金比较有效的细化方法. 碳质孕育法的关键是在镁熔体中引入碳以细化晶粒。目前,碳质材料变质处理法因熔体处理温度低、细化效果保持时间长等原因,已成为Mg-Al系合金最主要的晶粒细化技术。C可以细化Al含量(质量分数,下同)小于3%的Mg-Al合金,不能细化Al含量大于3%的Mg-Al合金,然而又能细化AZ61、AZ91等含有Mn的Mg-Al合金。

比较传统的碳质细化剂是MgCO3、C2Cl6、CCl6、石墨粉等。碳质孕育法对不含Al的镁合金是无效的,并且Ti、Zr、Be和RE元素对碳孕育效果都有不同程度的干扰。一般认为C和Al在熔体中发生反应生成大量细小弥散的Al4C3颗粒并作为α-Mg的异质晶核而细化镁合金晶粒。Al4C3与α-Mg有相同的晶体结构,为密排六方结构,并且晶格常数相近。

22.jpg

纳米MgO颗粒对Mg-Al合金晶粒尺寸的影响


23.jpg

纳米MgO颗粒对Mg-Al合金显微组织的影响:

(a)Mg-1wt.%Al加入0.1wt.%MgO;(b)Mg-1wt.%Al;

(c)Mg-9wt.%Al加入0.1wt.%MgO;(d)Mg-9wt.%Al;

CaO颗粒能够促进镁合金凝固时的异相形核。而且CaO被Mg还原产生的溶质Ca也能够促进晶粒细化。

25.jpg

CaO颗粒对Mg合金晶粒尺寸的影响

26.jpg

CaO颗粒对Mg合金显微组织的影响

(a)无添加;(b)0.3wt.%CaO;(c)0.7wt.%CaO;(d)1.0wt.%CaO

含碳高熔点细化剂研究比较多的是SiC、TiC、B2C及其中间合金(Al-Ti-C、Al-1B-0.6C)等。对于SiC细化镁合金的机理,一种观点认为SiC是高熔点化合物,与镁有良好的晶格匹配度,可以作为镁凝固时的晶核,促进晶粒细化;另一种观点认为SiC与Al发生反应生成Al4C3,Al4C3作为镁的形核点,起到晶粒细化作用。TiC大多以中间合金Al-Ti-C的形式加入,对于TiC在镁合金中的细化机理多数认为是由于生成了Al4C3,Al4C3作为形核核心起到了细化作用。有关B2C对镁合金的细化作用的研究中,其主要是以中间合金形式加入。

此外,含B、N的高熔点化合物也能对镁合金进行细化。通过Al3Ti3B中间合金对Mg-Al合金的细化机理研究得知,TiB2可以作为镁的异质形核核心,起到细化作用。AlN与α-Mg有良好的晶格匹配度,能够作为α-Mg的形核核心。

部分形核质点的晶体结构、晶格参数及与镁的计算晶格失配度

27.jpg

铝合金晶粒晶粒细化工艺

细化铝合金晶粒的液态工艺与镁合金工艺类似,此处只介绍添加合金溶质元素、晶粒细化剂、过冷度及冷却速率的影响。


溶质元素的影响

Si能够提高晶粒的形核速率和成分过冷,以及降低液铝的表面张力。当Si的质量分数达到2%左右,晶粒细化达到最佳值。当Si的质量分数过高时,α-Al相将由等轴晶向柱状晶转变。当加入少量的Ti和B时,随着Si质量分数的提高可持续细化铝合金晶粒。Si可促进AlB2粒子的异相形核作用。

Zr能够与Al、Ti作用形成Al3(Zr,Ti)化合物,能够促进晶粒的细化作用。

Mn能组织铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。

Hf的加入可以有效地细化合金晶粒,在凝固过程中铪元素可与铝反应形成Al3Hf粒子,初生的Al3Hf粒子可以作为基体有效的形核质点,与基体共格、纳米级别的Al3Hf粒子可以通过钉扎效应抑制晶粒的长大。由溶质原子理论和晶体学研究确定了实验合金的晶粒细化机制,具有两种不同的类型:低铪含量的细化效应主要是由Hf原子引发的成分过冷所致,中铪和高铪含量的细化效应为溶质原子与Al3Hf粒子共同作用所致。

稀土元素如La、Ce、Y及Sc等是铝合金的晶粒细化元素,能够有效细化材料的铸态晶粒。Sc在共晶温度左右时,在铝中有较大的溶解度,有利于生成含Sc较多的固溶体。含Sc的铝合金在结晶过程中,很容易有少量的初生Al3Sc相生成,Al3Sc相的晶体结构与铝基体相同,晶体错配度很小,只有1.63%,因而极易成为α相的形核中心,又因为其晶粒极其微小弥散,因而可起到良好的细化晶粒的效果。

专业 专注 省心 放心
  • 改善意见service@icnpt.com
  • 传真号0379-64872480
  • 客服电话4006037900
  • 工作时间8:00-18:00