中色行业在线培训平台

全国咨询热线:4006037900

智能制造

您当前的位置:首页 > 智能制造 > 教材

有色加工企业的智能化管理(2)
2018-02-01 16:23:53 点击率:670 来源:

 2、智能制造概念及架构

2.1智能制造的内涵

2.1.1 概念

       21世纪以来,随着物联网、大数据、云计算等新一代信息技术的快速发展及应用,智能制造被赋予了新的内涵,即新一代信息技术条件下的智能制造(Smart Manufacturing)。2010年9月,美国在华盛顿举办的”21世纪智能制造的研讨会”指出,智能制造是对先进智能系统的强化应用,使得新产品的迅速制造,产品需求的动态响应以及对工业生产和供应链网络的实时优化成为可能。德国正式推出工业4.0战略,虽没明确提出智能制造概念,但包含了智能制造的内涵,即将企业的机器、存储系统和生产设施融入到虚拟网络—实体物理系统(CPS)。在制造系统中,这些虚拟网络—实体物理系统包括智能机器、存储系统和生产设施,能够相互独立地自动交换信息、触发动作和控制。

       综上所述,智能制造是将物联网、大数据、云计算等新一代信息技术与先进自动化技术、传感技术、控制技术、数字制造技术结合,实现工厂和企业内部、企业之间和产品全生命周期的实时管理和优化的新型制造系统。 

2.1.2特征

       智能制造的特征在于实时感知、优化决策、动态执行等三个方面:

      一是数据的实时感知。智能制造需要大量的数据支持,通过利用高效、标准的方法实时进行信息采集、自动识别,并将信息传输到分析决策系统;

       二是优化决策。通过面向产品全生命周期的海量异构信息的挖掘提炼、计算分析、推理预测,形成优化制造过程的决策指令。

      三是动态执行。根据决策指令,通过执行系统控制制造过程的状态,实现稳定、安全的运行和动态调整。 

2.1.3构成

2.1.3.1智能装备

       智能装备是发展智能制造的基础与前提,由物理部件、智能部件和联接部件构成。智能部件由传感器、微处理器、数据存储装置、控制装置和软件以及内置操作和用户界面等构成;联接部件由接口、有线或无线联接协议等构成;物理部件由机械和电子零件构成。智能部件能加强物理部件的功能和价值,而联接部件进一步强化智能部件的功能和价值,使信息可以在产品、运行系统、制造商和用户之间联通,并让部分价值和功能脱离物理产品本身存在。

       智能装备具有监测、控制、优化和自主等四个方面的功能。监测是指通过传感器和外部数据源,智能产品能对产品的状态、运行和外部环境进行全面监测;在数据的帮助下,一旦环境和运行状态发生变化,产品就会向用户或相关方发出警告。控制是指可以通过产品内置或产品云中的命令和算法进行远程控制。算法可以让产品对条件和环境的特定变化做出反应;优化是指对实时数据或历史记录进行分析,植入算法,从而大幅提高产品的产出比、利用率和生产效率;自主是指将检测,控制和优化功能融合到一起,产品就能实现前所未有的自动化程度。 

2.1.3.2智能生产

       智能生产是指以智能制造系统为核心,以智能工厂为载体,通过在工厂和企业内部、企业之间以及产品全生命周期形成以数据互联互通为特征的制造网络,实现生产过程的实时管理和优化。智能生产涵盖产品、工艺设计、工厂规划的数字设计与仿真,底层智能装备、制造单元、自动化生产线,制造执行系统,物流自动化与管理等企业管理系统等。 

2.1.3.3智能服务

       通过采集设备运行数据,并上传至企业数据中心(企业云),系统软件对设备实时在线监测、控制,并经过数据分析提早进行设备维护。例如维斯塔斯通过在风机的机舱、轮毂、叶片、塔筒及地面控制箱内,安装传感器、存储器、处理器以及SCADA系统,实现对风机运行的实时监控。还通过在风力发电涡轮中内置微型控制器,可以在每一次旋转中控制扇叶的角度,从而最大限度捕捉风能,还可以控制每一台涡轮,在能效最大化的同时,减少对邻近涡轮的影响。维斯塔斯通过对实时数据进行处理预测风机部件可能产生的故障,以减少可能的风机不稳定现象,并使用不同的工具优化这些数据,达到风机性能的最优化。 

2.1.4作用

       发展智能制造的核心是提高企业生产效率,拓展企业价值增值空间,主要表现在以下几个方面:一是缩短产品的研制周期。通过智能制造,产品从研发到上市、从下订单到配送时间可以得以缩短。通过远程监控和预测性维护为机器和工厂减少高昂的停机时间,生产中断时间也得以不断减少。

        二是提高生产的灵活性。通过采用数字化、互联和虚拟工艺规划,智能制造开启了大规模批量定制生产乃至个性化小批量生产的大门。

       三是创造新价值。通过发展智能制造,企业将实现从传统的”以产品为中心”向”以集成服务为中心”转变,将重心放在解决方案和系统层面上,利用服务在整个产品生命周期中实现新价值。 

2.2国外智能制造系统架构

       自美国20世纪80年代提出智能制造的概念后,一直受到众多国家的重视和关注,纷纷将智能制造列为国家级计划并着力发展。目前,在全球范围内具有广泛影响的是德国”工业4.0”战略和美国工业互联网战略。 

2.2.1德国

        2013年4月,德国在汉诺威工业博览会上正式推出了”工业4.0”战略,其核心是通过信息物理系统(CPS)实现人、设备与产品的实时连通、相互识别和有效交流,构建一个高度灵活的个性化和数字化的智能制造模式。在这种模式下,生产由集中向分散转变,规模效应不再是工业生产的关键因素;产品由趋同向个性的转变,未来产品都将完全按照个人意愿进行生产,极端情况下将成为自动化、个性化的单件制造;用户由部分参与向全程参与转变,用户不仅出现在生产流程的两端,而且广泛、实时参与生产和价值创造的全过程。

       德国工业4.0战略提出了三个方面的特征:一是价值网络的横向集成,即通过应用CPS,加强企业之间在研究、开发与应用的协同推进,以及在可持续发展、商业保密、标准化、员工培训等方面的合作;二是全价值链的纵向集成,即在企业内部通过采用CPS,实现从产品设计、研发、计划、工艺到生产、服务的全价值链的数字化;三是端对端系统工程,即在工厂生产层面,通过应用CPS,根据个性化需求定制特殊的IT结构模块,确保传感器、控制器采集的数据与ERP管理系统进行有机集成,打造智能工厂。 

2.2.2美国

2.2.2.1工业互联网

       “工业互联网”的概念最早由通用电气于2012年提出,工业互联网系统由智能设备、智能系统和智能决策三大核心要素构成,数据流、硬件、软件和智能的交互。由智能设备和网络收集的数据存储之后,利用大数据分析工具进行数据分析和可视化,由此产生的”智能信息”可以由决策者必要时进行实时判断处理,成为大范围工业系统中工业资产优化战略决策过程的一部分。

——智能设备:将信息技术嵌入装备中,使装备成为可智能互联产品。为工业机器提供数字化仪表是工业互联网革命的第一步,使机器和机器交互更加智能化,这得益于以下三个要素:一是部署成本:仪器仪表的成本已大幅下降,从而有可能以一个比过去更经济的方式装备和监测工业机器。二是微处理器芯片的计算能力:微处理器芯片持续发展已经达到了一个转折点,即使得机器拥有数字智能成为可能。三是高级分析:”大数据”软件工具和分析技术的进展为了解由智能设备产生的大规模数据提供了手段。

——智能系统:将设备互联形成的一个系统。智能系统包括各种传统的网络系统,但广义的定义包括了部署在机组和网络中并广泛结合的机器仪表和软件。随着越来越多的机器和设备加入工业互联网,可以实现跨越整个机组和网络的机器仪表的协同效应。智能系统的构建整合了广泛部署智能设备的优点。当越来越多的机器连接在一个系统中,久而久之,结果将是系统不断扩大并能自主学习,而且越来越智能化。

——智能决策:大数据和互联网基础上实时判断处理。当从智能设备和系统收集到了足够的信息来促进数据驱动型学习的时候,智能决策就发生了,从而使一个小机组网络层的操作功能从运营商传输到数字安全系统。 

2.2.2.2智能制造

        2011年6月24日美国智能制造领导联盟(Smart Manufacturing Leadership Coalition,SMLC)发表了《实施21世纪智能制造》报告。报告认为智能制造是先进智能系统强化应用、新产品制造快速、产品需求动态响应、以及工业生产和供应链网络实时优化的制造。智能制造的核心技术是网络化传感器、数据互操作性、多尺度动态建模与仿真、智能自动化、以及可扩展的多层次的网络安全。该报告给出了智能制造企业框架。智能制造企业将融合所有方面的制造,从工厂运营到供应链,并且使得对固定资产、过程和资源的虚拟追踪横跨整个产品的生命周期。最终结果,将是在一个柔性的、敏捷的、创新的制造环境中,优化性能和效率,并且使业务与制造过程有效串联在一起。 

 

 


专业 专注 省心 放心
  • 改善意见service@icnpt.com
  • 传真号0379-64872480
  • 客服电话4006037900
  • 工作时间8:00-18:00